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We study ideal polymer chains interacting attractively with the borders of the
lacunas of an infinitely ramified fractal, the Sierpinski carpet. Ideal chains are
simulated on finite stages of construction of this fractal at various temperatures.
The mean-square displacement and the mean number of adsorbed monomers of
N-step chains are estimated in these lattices, and extrapolations to the fractal
limit (infinite lattice) consider the exact forms of finite-size corrections as pre-
viously predicted by the series expansion method. In the noninteracting case,
a finite fraction of the monomers is adsorbed, and this fraction increases as the
temperature decreases. However, there is evidence that the critical exponent v
which governs the growth of the chains varies with the temperature in a non-
monotonic way. At high temperatures v increases with decreasing temperature,
and thus the chains are more stretched than in the noninteracting case. At an
intermediate temperature, v starts to decrease and is still positive at very low
temperatures, when the chains grow along the borders of several lacunas, occa-
sionally crossing the bulk between them.
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I. INTRODUCTION

The adsorption of polymers on attractive surfaces is a problem of great
pratical importance and has been studied for a long time.(1,2) Statistical
models which consider linear polymers on a lattice interacting with a rigid
wall succeeded in representing those systems. The general picture which
emerged from those studies revealed that the polymer undergoes an
adsorption-desorption transition. At low temperatures, the chain grows
along the attractive wall with loops in the bulk, and a finite fraction of the
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monomers adsorbed. At a critical temperature the number of adsorbed
monomers M scales as M ~ N0, where N is the number of monomers in
the chain and <t> is a crossover exponent. At higher temperatures M is finite
even for very long chains (N-> oo).

Recently, the increasing interest in physical systems in disordered
media motivated a large number of studies of polymers on fractal struc-
tures.(3,4,5) The effect of adsorbing boundaries, fractal or not, is also very
important in these systems.(6) The adsorption-desorption transition was
observed in studies of ideal chains(7) and self-avoiding walks(8,10) on
various finitely ramified fractals, considering one-dimensional, plane and
also fractal attractive walls. There are also some experiments with polymers
in porous media, such as a recent work with polystyrene confined in
Vycor.(11)

In this work we study ideal polymer chains interacting attractively
with the lacunas of an infinitely ramified fractal, the Sierpinski carpet (SC),
whose construction is shown in Fig. 1. In this model, configurations where
the polymer enters a lacuna are forbidden, and the statistical weight is
larger for configurations where one or more monomers slip along the bor-
ders of lacunas. The main difference to the fractals previously studied(7,10)

is that, in the SC, the adsorbing walls are distributed through the whole struc-
ture, simulating a porous medium with attractive internal surfaces. Conse-
quently, important changes in the behavior of the chains are expected. We
will show that there is no adsorption-desorption transition in this system:
in the non-interacting case (or infinite temperature), a finite fraction of the
monomers is adsorbed, and in the interacting case this fraction increases as
the temperature decreases. However, there is evidence that the exponent v,
which governs the growth of the chain (v= 1 /Dr, where Dc is the dimen-
sion of the chain), varies with the temperature in a non-monotonic way.

The ideal chain is the simplest model of linear polymers,(1) neglecting
self-avoiding effects. The problem is defined in the same ensemble of the

Fig. 1. Interactive construction of the Sierpinski carpet.
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random walks, but the statistical weight of an N-step chain is XN, where x
is the step fugacity. Ideal chains and random walks are equivalent
problems in Euclidean lattices, but are very different in fractal struc-
tures.(12) If the chain interacts with a surface, the weight of an N-step chain
with M steps along the surface is

with

In Eq. (2), — E is the energy of interaction (£>0 in the attractive case)
and T is the temperature.

Non-interacting ideal chains on the SC were previously studied using
series expansions techniques.(13) The exact number of chains and their
mean-square displacements were obtained up to N = 16 in the fractal limit
(stage n -» oo; see Fig. 1). The series expansions technique(5) is based on the
calculation of the number of embeddings of the chains in a finite stage n of
construction of the fractal, and a suitable extrapolation to n-» oo. It is
important to recall that approximation methods are necessary to solve
such problems in infinitely ramified fractals, while in finitely ramified
fractals it is often possible to construct exact recursion relations for the
generating functions.(7,8,9,10)

It is very difficult to extend the series expansions technique to the
interacting case because different embeddings in the same lattice may have
different weights. On the other hand, simulations on finite stages of con-
struction of the fractals give very accurate estimates of geometric properties
for larger N, but they must be extrapolated to the fractal limit. In this
work, the ideas of the extrapolation procedure developed by the series
expansions technique will be used in the analysis of the results of numerical
simulations on finite stages of the SC. We will obtain, in the fractal limit,
very accurate estimates of the mean-square displacement </J^> and the
mean number of adsorbed monomers <MN>, for relatively long chains
(Nx60). Comparison with exact results for the non-interacting chains will
prove the reliability of the method.

This work is organized as follows. In Section II we derive the expected
dependence of </?^>B and <MN>n on the stage n of the SC, based on the
series expansions method. In Section III we discuss the simulations on
finite stages of the SC and the procedure to estimate < R2

N> and < MN> in
the fractal limit, and compare these estimates with exact results up to
N=16 for the non-interacting ideal chains. In Section IV we present the
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results for the ideal chains interacting with the borders of the lacunas of
the SC. Section V contains our final conclusions.

II. RELATION BETWEEN GEOMETRIC QUANTITIES IN FINITE
STAGES AND IN THE FRACTAL LIMIT

The series expansions technique was applied to study various statistical
systems on regular fractals.(5,13,14) The aim of this technique is to calculate
exactly the number of embeddings of a connected graph in any stage n of
the SC. As an example, in Fig. 2b we show two particular embeddings of a
graph (a chain with three bonds, shown in Fig. 2a) in the second stage of the
SC. It was proved that the total number of embeddings of a connected graph
on stage n of the SC has the general form.

where A, B and C are constants which depend on the graph and the
fractal.(5) Note that 8" is the number of non-eliminated squares in stage n
(see Fig. 1) and L = 3" is the length of the external border of stage n.

There is a minimum stage n0 in which a graph can be embedded, and
Eq. (3) is valid for n>n0 . Then, if a graph has N bonds, it is generally
necessary that N<3no to ensure that this graph can be embedded in stage
n0 (or n>n0).

The mean square displacement <R2N>yn and the mean number of adsor-
bed steps < MN>n of N-step ideal chains on stage n are

Fig. 2. (a) A graph with three bonds, labled 1 to 3. (b) Examples of two embeddings of that
graph on the second stage of the Sierpinski carpet, (c) All the embeddings of that graph whose
bonds labled 1 and 2 are absorbed at the border of a lacuna and whose bond labled 3 is not
absorbed.
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and

In Eqs. (4a) and (4b), i runs from 1 to 4N (all the N-step chains)
and G i ( n ) is the total number of embeddings of the chain i in stage n.
R2i (Eq. 4a) is the square of the end-to-end distance of chain i.

In Eq. (4b) we consider that different embeddings of the same graph
have different numbers of adsorbed bonds. For instance, in Fig. 2b one
embedding has two adsorbed bonds and the other has just one. If a graph
has N bonds, each bond may be adsorbed or not, then there are 2N

possibilities of choosing the set of adsorbed bonds of a particular graph. In
Eq. (4b), si runs from 1 to 2N, representing all the possible sets of adsorbed
bonds of graph i; Gs1(n) is the number of embeddings of graph i in stage
n with the set si actually adsorbed; M ( s i ) is the number of adsorbed bonds
of this set. For instance, in Fig. 2c we show all the embeddings in stage
n = 2 of the graph shown in Fig. 2a, with the condition that the bonds
labled 1 and 2 are adsorbed and the bond labled 3 is not adsorbed; then,
M ( S i ) = 2 and G s i (2 ) = 8 in this case.

In the derivation of Eq. (3), we considered that there are 8 reproduc-
tions of stage « at stage n + 1, which obey the distribution of the squares
in the generator. Then, the number of embeddings of a particular graph in
stage n + 1 is 8 times the number of embeddings in stage n, plus the num-
ber of embeddings crossing two or more reproductions of stage n at stage
n + 1.(5) The same reasoning can be extended to the embeddings subject t o
the condition that the set of bonds si is adsorbed. Then G s i (n) also has the
general form of Eq. (3) (certainly, for some choices of the set si, G s i ( n ) = 0
for all n).

Thus we conclude that <R2N>Nand <MN>n in Eqs. (4a) and (4b) have
the general forms

and

where A1,..., F1, A2,..., F2 are constants.
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Eqs. (5a) and (5b) can be expanded as

and

where a1,b1,... are constants related to A1,...,F1, and a2,b2,... are con-
stants related to A2,...,F2. Eqs. (6a) and (6b) show the exact form of the
finite-size corrections expected in this fractal. It is interesting to note that
the leading corrections (second term in the right-hand sides) are propor-
tional to L 1 - D F , where L = 3" is the length of the external border of stage
n and

is the fractal dimension of the SC. Then the factor L 1 - D f is simply the ratio
of the length and the area of a lattice.

In the fractal (n -» oo) we have

These results can be generalized to any regular fractal in a straightforward
way.(5)

III. NUMERICAL SIMULATIONS AND EXTRAPOLATIONS TO
THE FRACTAL LIMIT

The series expansions technique provides a systematic method to
extrapolate quantities calculated in finite stages of a regular fractal, based
on its rule of construction. This extrapolation method is sufficiently general
to be used in the analysis of data obtained using any technique, exact or
approximate.

Simulations of N-step ideal chains can be performed on various stages
in which all these chains can be embedded. If the lengths of the lattices are
3n0, 3n0 +1,..., then it is necessary that 3n0>N to ensure that all the N-step
chains can be embedded in all lattices (condition of validity of Eq. 3).

Eqs. (5a), (5b), (6a), (6b) show us the expected forms of the estimates
<R 2

N > n and <MN> n . If these estimates were obtained in six different stages



n (n0,..., n0 + 5), Eq. (5a) could be used to estimate the six constants
A1,..., F1 and Eq. (5b) used to estimate the six constants A2,..., F2. From
these constants we would get <R2

N> and <M N > in Eq. (8).
However, in order to obtain estimates for relatively large N, and

considering the condition 3n0>N, we are able to use only three stages
(n = 4, n = 5 and n = 6, with lengths 81, 243 and 729, respectively). Then we
consider the three leading terms in the right-hand sides of Eqs. (6a) and
(6b), use the estimates <R2

N>n in the three stages above to obtain the coef-
ficients A 1 /D 1 , a1 and b1 (Eq. 6a), and use the estimates <MN>n to obtain
A2/D2, a2 and b2 (Eq. 6b).

The algorithm for simulating ideal chains is similar to the algorithm
for simulating random walks,(15) but requires a larger amount of data to
produce accurate results. The initial site for each chain is randomly chosen
over the lattice and NMAX is its maximum number of steps. As we are inter-
ested in the conformational properties of the chains as functions of N
(Eqs. 4a and 4b), and considering that the weight XN (Eq. 1) is the same
for all TV-step chains, we do not need to take into account the weight x in
the simulations. On the other hand, different chains with N steps have
different statistical weights due to the different numbers of adsorbed bonds
M (Eq. 1). Then, at each step, the probability to move to a neighboring site
is proportional to z (Eq. 2b) if the step is along the border of a lacuna, and
proportional to 1 if it is not.

We must also consider the effect of variable coordination numbers
(from 2 to 4). Consider, for simplicity, the case z= 1 (no interaction). Two
chains of N — 1 steps, labled A and B, must be generated with equal prob-
ability p during the simulation. However, consider that the final site of
chain A has yA neighbors and the final site of chain B has yB neighbors.
Adding one bond to A or B, we produce an N-step chain. Then, any one
of the N-step chains produced from A(B) will be generated with probability
p / y A ( p / y B ) . Thus, in order that all N-step chains have the same weight, the
weight of a chain (used to compute the averages) must be multiplied by the
coordination number of the original site of the step, at each step(16) (yA or
yB in the example above). Then the chains generated in the simulations will
have statistical weights consistent with Eq. (2).

As the weights of the generated chains are distributed over various
orders of magnitudes, a large number of chains are necessary to produce
many statistically representative configurations. Then < R 2

N > n and <MN>n

are averaged over 108 chains with NMAX = 81 steps (in some cases,
NMAX = 243) on stages n = 4, 5 and 6.

In Table I we show <R2
N> for N = 2 to 16, obtained from results of

simulations on stages n = 4, 5 and 6 and extrapolations considering the
three leading terms in Eq. (6a). Results of two independent simulations
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Table 1. Estimates of Mean-Square Displacements <R2
N> of

N- Step Noninteracting Ideal Chains on the SCa

N

1
3
4
5
6
7
8
9

10
11
12
13
14
15
16

<R2
N> ( a )

1.980951
2.944840
3.895467
4.835754
5.765094
6.687493
7.601847
8.510022
9.414640

10.315014
11.209340
12.099884
12.981129
13.855963
14.731540

<R2
N> ( b )

1.979371
2.944714
3.894110
4.839040
5.771630
6.701553
7.609954
8.525794
9.424693

10.314410
11.199932
12.090302
12.963266
13.843191
14.731973

<R 2
N > ( c )

1.978104
2.943169
3.892373
4.836802
5.769373
6.698501
7.609055
8.523750
9.422962

10.314629
11.200905
12.090749
12.965617
13.846809
14.732207

<R2
N> ( d )

1.975309
2.940168
3.890980
4.832407
5.763379
6.686996
7.602661
8.512076
9.414981

10.312342
11 .204083
12.090816
12.972527
13.849664
14.722214

a (a) and (b): simulations on stages n = 4, n = 5 and n = 6, extrapolations using three terms of
Eq. (6a); (c): simulations on stages n = 5 and n = 6, extrapolations using two terms of
Eq. (6a); (d): exact results (ref. 12).

(i.e., using different random number seeds in the simulations on each stage)
are shown. The deviations from the exact results(13) shown in the last
column, are always less than 0.3%. We also show <R2

N> obtained from
simulations on stages n = 5 and n = 6 and extrapolations considering only
the two leading terms of Eq. (6a) (i.e., only one finite-size correction term).
The deviations are always less than 0.2%.

The data in Table I also show that the deviations of exact and
approximate results do not increase systematically as N increases. This is
essential to ensure the reliability of the results for larger N. However, the
difference of <R2

N>n in stage n = 6 and the exact <R2
N> increases with N,

proving that the extrapolations to the fractal limit are absolutely necessary.

IV. RESULTS FOR IDEAL CHAINS INTERACTING WITH THE
LACUNAS OF THE SC

Simulations at various reduced temperatures t = kBT/E between 0.3
and 6.0 were performed.

In Fig. 3 we show, at some temperatures, mN= <MN>/N versus 1/N
up to NMAX

 = 81, obtained from simulations in stages n = 4, n = 5 and n = 6
and extrapolations using three terms of Eq. (6b). We note that mN rapidly
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Fig. 3. Fraction of adsorbed monomers mN of N-step ideal chains at various temperatures.
The corresponding reduced temperatures t = k B T / E are indicated.

converges to their asymptotic values. Even for the non-interacting chains
(T= oo), mN remains finite for large N, thus there is no desorption-adsorp-
tion transition when T decreases.

We estimate the fraction of adsorbed monomers for infinitely long
chains, m ̂ , from least squares fits and parabolic fits of the data in Fig. 3
(for N > 3 0 ) . Both fits give similar results. The fraction of non-adsorbed
monomers /^ = 1 — m^ is plotted in Fig. 4 as a function of inverse tem-
perature. For sufficiently small temperatures we obtain

667

with Cx=1.3E/kB. The decrease of foo with decreasing temperature is faster
than the increase of the weight of the adsorbed monomers z (Eq. 2b), and
the chain is almost completely adsorbed at low temperatures. However,
since/^>0 and </?^> has a power law divergence at any finite tem-
perature (this point is discussed below), the chain is never wrapped around
a single lacuna.
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Fig. 4. Fraction of non-adsorbed monomers of infinitely long chains, fx, versus inverse
reduced temperature, 1/t = E/k B T. Data for t = 0.4 and ( = 0.3, not shown in Fig. 3, are
represented here. The straight line is a least squares fit of the last seven points.

Fig. 5. Mean-square displacement <R2> of N-step ideal chains at various temperatures:
t=oo (D) ; t = 6.0 ( x ) ; t = 1.5 ( A ) ; t = 1.0 (*); ( = 0.8 ( V ) ; t = 0.5 ( + ); t = 0.3 (O) . Different
extrapolations procedure were used to estimate <R2> in (a) and (b) (see text).
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Fig. 6. Finite-size estimates VN .10 (Eq. 11 with i = 10) for N-step ideal chains at I = 3.0 in two
independent simulations.

In Fig. 5a we show <R2N> versus N, for N up to 81, at various tem-
peratures. These estimates are obtained with the same procedure as < M N > .
Their errors are estimated from the scattering of the results of independent
simulations, and are smaller than the size of the data point symbols. At
high but finite temperatures, the chain grows faster than it grows at infinite
temperature (non-interacting chain). It is confirmed by the results in Fig. 5b
for N up to 200 (t = oo, t = 6.0 and t = 1.5). They were obtained from simula-
tions on stages n = 5 and n = 6 and extrapolations using only two terms in
Eq. (6a). As the temperature decreases, the growth becomes slower.

At a fixed temperature and for large N the chains must behave as

where v is the critical exponent which measures the growth of the chain. It
may be estimated from



When N -> oo we expect that vN,i -> v for finite i. In order to reduce the
effect of statistical fluctuations in the data, we must consider large values
of i in Eq. (11), but with N>i .

In order to analyse the effect of statistical errors on the estimates of
VN,i , we show in Fig. 6 results of two independent simulations at t = 3.0,
using i= 10. For N<60, the scatter of the data from different simulations
is very small (the relative error is always less than 0.7%). For higher values
of N, the deviations of different estimates is larger, and some oscillations
appear. It may be related to strong finite-size effects on the estimates of
(R2 N>n in stage n = 4 (L = 81). Similar conclusions are obtained with other
even values of i near i= 10 (odd values of i are not suitable for loose-
packed lattices). Thus, our analysis of the exponent v for the other tem-
peratures will be based on results for N < 60.

In Fig. 7 we show vN,i for i = 10 at various temperatures. Note that
we considered VN, 10 only up to N = 50, using <R2N> up to N = 60 (Eq. 11).
The estimated error bars are nearly Av = 0.001 for all the data in Fig. 7;
it corresponds to two or three times the size of the data point symbols.

Fig. 7. Finite-size estimates vN,10 (Eq. 11 with i = 10) for N-step ideal chains at various tem-
peratures: t=00 ( D ) ; t = 6.0 (x ) ; t = 3.0 (A); t = 2.0 (*); t = 1.5 ( +); t = 1.1 ( V ) .
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V N , 1 0 is stable (at fixed temperature) until t = 1.0; below this temperature,
the fluctuations are very large and the convergence is not clear as N -> oo.
Fig. 7 suggests that v varies with the temperature, and that this variation
is not monotonic. Up to t=3.0, v increases when the temperature
decreases, i.e., the chain gets more stretched when adsorption is stronger.
For t < 3.0, v starts to decrease with temperature, but Fig. 5b indicates that
a power law divergence of <R2

N> is still present at very low temperatures.
In this regime, the chain grows along the borders of various lacunas (mx is
very near 1 at t = 0.3; see Fig. 4), and eventually crosses the bulk between
adjacent lacunas.

The final estimates of v are obtained from the convergence of VN,10

(Fig. 7) at each temperature. For t < 1.0, we cannot obtain reliable estimates.
An alternative analysis of our data was done using pade approximants.(17)

Although the series are approximate, the convergence of the pade approxi-
mants is surprisingly good for high temperatures. However, for t< 1.5 this
method does not provide accurate estimates. In Fig. 8 we show the estimates

Fig. 8. Critical exponent v (Eq. 10) versus inverse reduced temperature 1/t = E/kBT,
obtained from VN,10 (error bars) and from pade approximants (x, the central estimates).



of v at various temperatures using both techniques: the error bars are
obtained analysing vN,10 and the points (x) are central estimates obtained
in a statistical analysis of pade approximants (25 <N<80).(18) Both
methods indicate the same non-monotonic dependence of v on temperature.

As the fluctuations in <R2
N> increase rapidly with N and the estimates

vN,i enlarge these fluctuations, the data for N > 81 do not give results better
than the ones shown in Fig. 7. On the other hand, these estimates do not
suggest any change of behavior for large N.

The idea of continuously varying exponents is unexpected, then it
deserves some comments. The difference between the smaller and the
greater estimates of v is less than 10%, suggesting the possibility of tem-
perature dependent amplitudes with the same asymptotic exponent. This
scenario cannot be completely discarded, since we cannot discard the
possibility of a change in the behavior of <R2

N> for much larger N.
However, our analysis was performed with two extrapolation techniques
generally used to avoid finite-size effects (on the length N), and the inter-
pretation of variable v is consistent with the properties of the model up to
N=81 extrapolated to N-> oo. Moreover, temperature dependent critical
exponents are found in related statistical problems on fractals,(19) thus
there is no special reason to reject this unusual property in a fractal system.
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V. SUMMARY AND CONCLUSIONS

We have studied ideal chains interacting attractively with the lacunas
of the SC. We developed a technique of calculation of geometric properties
combining simulations on finite stages of the SC and extrapolations to the
fractal limit based on results of the series expansions method. This techni-
que gives very accurate estimates of the mean-square displacement <R2

N>
and the mean number of adsorbed monomers < MN> of N-step chains in
the SC (infinite lattice). The estimates of <R 2

N > for non-interacting chains
are in good agreement with the exact results up to N = 16.(13)

At temperatures higher than t= 1.0 the chains are more stretched than
at infinite temperature (non-interacting chains).

In order to understand this result, we must consider the "entropic
trapping effect" of the highest coordination sites, which is characteristic of
non-interacting ideal chains (T-> oo) in several fractals.(12,13) In this case,
the chains with the same length N have the same statistical weight XN (Eq. 2,
T= oo). Then consider two sites, A and B, with coordinations yA > yB. The
number of chains which cross site A is greater than the number of chains
which cross site B, since there are more possibilities of steps from site A.
As all the N-step chains have the same weight, a site of higher coordination
will be crossed by a greater number of different chains than a site of low



coordination. In the SC this picture is supported by the estimate of the
fraction of monomers in the borders of the lacunas m^ =0.26 (see Fig. 3,
t = oo). This value is less than the fraction of sites in the borders of the
lacunas, which is exactly 1/3 in the SC. Thus it is clear the larger probability
of the highest coordination sites (the bulk) being crossed by the ideal chains.

When the temperature decreases and the attraction to the lacunas
appears, there is a larger statistical weight for steps along the border of
lacunas. Then the probability of the low coordination sites being crossed
by the chains increases. It happens as if the chain had got a larger portion
of the lattice to grow (without a "preference" for the bulk), and the expected
consequence is a faster growth. It is consistent with the increase of v for
large but finite t. The greatest estimate v = 0.48 is very close to the estimate
for the random walks vw = 0.476 + 0.006,(15) and there is no entropic trapping
effect in that problem. This is another result supporting the interpretation
that the attraction to the lacunas compensates the entropic trapping to the
high coordination sites. As t decreases, the probability of the low coordina-
tion sites being crossed by the chains increases, which is associated to the
slower growth at t ~ 2.0.

At low temperatures ( t < 1 . 0 ) the growth is slower, but still with a
power-law divergence of <R2

N>. The chain grows along the borders of
various lacunas, and the fraction of nonadsorbed chains decays very
rapidly (Eq. 9). Thus there are small jumps between adjacent lacunas
instead of loops in the bulk. This is possible because lacunas of all sizes are
spread on the whole lattice.

Although a continuous variation of critical exponents with the tem-
perature is not expected in similar models in Euclidean lattices, it is impor-
tant to recall that it may not be the case in fractals. For example, self-avoiding
walks with curvature energy have temperature (or energy) dependent criti-
cal exponents in some fractals.(19)

We conclude that, although there is no adsorption-desorption tran-
sition in this model, there are interesting phenomena associated with the
growth of the chain at various temperature ranges. In experiments with
polymers on highly disordered media, we suggest the investigation of effects
such as the non-monotonic variation of the growth exponent with tem-
perature. Further work considering other polymer models, such as the self-
avoiding walk, in fractals with 2<DF<3, would also be interesting to
make a connection with real systems.

Adsorption of Polymers on Infinitely Ramified Fractal 673

ACKNOWLEDGMENTS

This work was partially supported by CNPq and FINEP (Brazilian
agencies).



REFERENCES

1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca,
New York, 1979).

2. K. Binder and K. Kremer, in Scaling Phenomena in Disordered Systems, R. Pynn and
A. Skjeltrop, eds. (Plenum, New York, 1985).

3. R. Rammal, G. Toulouse, and J. Vannimenus, J. Physique 45:389 (1984).
4. S. Havlin and B. Avraham, Adv. Phys. 36, 695 (1987).
5. F. D. A. Aarao Reis and R. Riera, J. Stat. Phys. 71:453 (1993).
6. P. Pfeifer, in Fractals in Physics, L. Pietronero and E. Tosatti, eds. (Elsevier Science

Publishers, 1986).
7. M. Knezevic and D. Knezevic, Phys. Rev. E 53:2130 (1996).
8. V. Bubanja, M. Knezevic, and J. Vannimenus, J. Stat. Phys. 71:1 (1993).
9. S. Elezovic-Hadzic, M. Knezevic, S. Milosevic, and I. Zivic, J. Stat. Phys. 83:1241 (1996).

10. S. Milosevic, I. Zivic, and V. Miljkovic, Phys. Rev. E 55:5671 (1997).
11. J. Lal, S. K. Sinha, and L. Auvray, J. Phys. II France 7:1597 (1997).
12. A. Giacometti, A. Maritan, and H. Nakanishi, J. Stat. Phys. 75:669 (1994).
13. F. D. A. Aarao Reis and R. Riera, Physica A 208:322 (1994).
14. F. D. A. Aarao Reis and R. Riera, Phys. Rev. E 49:2579 (1994).
15. F. D. A. Aarao Reis, J. Phys. A 28:6277 (1995).
16. J. Batoulis and K. Kremer, J. Phys. A 21:127 (1988).
17. G. A. Baker, Essentials of pade Approximants (Academic Press, New York, 1975).
18. A. J. Guttmann, J. Phys. A 20:1839 (1987).
19. A. Giacometti and A. Maritan, J. Phys. A 25:2753 (1992).

674 Aarao Reis


